Entropy Consistent, Tvd Methods with High Accuracy for Conservation Laws

نویسنده

  • Xuefeng Li
چکیده

The Godunov method for conservation laws produces numerical solutions that are total-variation diminishing (TVD) and converge to weak solutions which satisfy the entropy condition (Entropy Consistency), but the method is only first order accurate. Many second and higher order accurate Godunov–type methods have been developed by various researchers. Although these high order methods perform very well numerically, convergence and entropy-consistency has not been proven, maybe due to the highly nonlinear approach. In this paper, we develop a new class of Godunov–type methods that are TVD, converge to weak solutions of conservation laws, and satisfy the entropy condition. The error produced by these methods are theoretically controllable by the choice the piecewise constant functions used in the numerical approximation. Numerical experiments confirm that our methods produce numerical solutions that are comparable to those produced by higher order methods, while maintaining all the good characteristics of the Godunov method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A total variation diminishing high resolution scheme for nonlinear conservation laws

In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...

متن کامل

The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws

This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...

متن کامل

A Class of High Resolution Shock Capturing Schemes for Non-linear Hyperbolic Conservation Laws

Abstract. A general procedure to construct a class of simple and efficient high resolution Total Variation Diminishing (TVD) schemes for non-linear hyperbolic conservation laws by introducing anti-diffusive terms with the flux limiters is presented. In the present work the numerical flux function for space discretization is constructed as a combination of numerical flux function of any entropy ...

متن کامل

A new total variation diminishing implicit nonstandard finite difference scheme for conservation laws

In this paper, a new implicit nonstandard finite difference scheme for conservation laws, which preserving the property of TVD (total variation diminishing) of the solution, is proposed. This scheme is derived by using nonlocal approximation for nonlinear terms of partial differential equation. Schemes preserving the essential physical property of TVD are of great importance in practice. Such s...

متن کامل

A Genuinely High Order Total Variation Diminishing Scheme for One-Dimensional Scalar Conservation Laws

It is well known that finite difference or finite volume total variation diminishing (TVD) schemes solving one-dimensional scalar conservation laws degenerate to first order accuracy at smooth extrema [8], thus TVD schemes are at most second order accurate in the L1 norm for general smooth and non-monotone solutions. However, Sanders [12] introduced a third order accurate finite volume scheme w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997